Crystal Structures, and Electrical Conducting and Magnetic Properties in the Plate Crystals of (Ethylenedithiotetrathiafulvalenoquinone-1, 3-dithiolemethide)₂ · MX_4 (M=Fe, Ga, X=Br; M=Fe, X=C1) Salts

Takuya Matsumoto,* Tsuyoshi Kominami,* Kazumasa Ueda,* Toyonari Sugimoto,*,+,¹ Toshiji Tada,* Harukazu Yoshino,‡ Keizo Murata,‡ Motoo Shiro,§ Ei-ichi Negishi,¶ Hiroshi Matsui,¶ Naoki Toyota,†'¶ Satoshi Endo,|| and Kazuko Takahashi†

*Research Institute for Advanced Science and Technology, Osaka, Prefecture University, Osaka 599-8570, Japan; †Center for Interdisciplinary Research, Tohoku University, Sendai 980-8577, Japan; ‡Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; \$Rigaku Corporation, Tokyo 196-8666, Japan; ¶Graduate School of Science, Tohoku University, Sendai 980-8578, Japan; and ∥Center for Low-Temperature Science, Tohoku University, Sendai 980-8577, Japan

Received December 17, 2001; in revised form May 1, 2002; accepted May 13, 2002

By the reaction of a new donor molecule, ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with FeBr₃, GaBr₃ or FeCl₃ in CH₃CN/CS₂ charge transfer (CT) salts of 1 with counteranions of FeBr₄, GaBr₄ or FeCl₄ (1₂ · FeBr₄, $1_2 \cdot \text{GaBr}_4$ and $1_2 \cdot \text{FeCl}_4$) as plate crystals were obtained. Their crystal structures are apparently similar to each other, in which 1 molecules are dimerized in the parallel direction of their molecular long axes, and the dimers are stacked with changing the direction of the molecular long axes alternately to form a one- dimensional column. The counteranions intervene between the 1-stacked columns and are aligned in a zigzag manner. The room-temperature electrical conductivities of $1_2 \cdot FeBr_4$ and $1_2 \cdot \text{GaBr}_4$ are fairly high (10–15 S cm⁻¹), but a small value $(0.8 \,\mathrm{S \, cm^{-1}})$ is obtained for 1_2 FeCl₄. For all CT salts, temperature dependences of electrical conductivity are semiconducting in spite of very small activation energies (30-90 meV). Based on the comparison between their electrical conducting and magnetic properties, it is suggested that the d spins of FeBr₄⁻ or $FeCl_4^-$ ions exert almost no influence on the π conducting electrons in the 1-stacked column. © 2002 Elsevier Science (USA)

Key Words: new donor molecule; charge-transfer salt; magnetic anion; high electrical conductivity; semiconducting; very small π -d interaction.

INTRODUCTION

From about the middle of 1980 began an active study on molecular/organic magnetic conductors in which conduct-

ing electrons and local spins are expected to significantly interact with each other so as to produce novel electrical conducting and/or magnetic properties (1). Until now, there was a great deal of progress especially in several charge transfer (CT) salts of π donor molecules with magnetic-metal counteranions. In such molecular/organic π/d systems where the π electrons are conducting and the d spins are localized, the following are the most epoch making, that is, paramagnetic superconductors based on β'' -[bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF)₄. $[(H_2O)M(C_2O_4)]_3 \cdot PhCN (M = Fe, Cr) (2, 3), antiferro$ magnetic superconductors based on κ -[bis(ethylenedithio) tetraselenafulvalene (BETS)]₂ · FeBr₄ (4, 5), a ferromagnetic metal based on $(BEDT-TTF)_2 \cdot [MnCr(C_2O_4)_3]$ (6), and a field-induced ferromagnetic superconductor based on λ -(BETS)₂ · FeCl₄ (7). However, the simultaneous appearance of anitiferro- or ferromagnetism and metallic- or superconductivity is not always a result of the interaction between the conducting π electrons and the local d spins involved in the CT salts. The π/d interaction is scarcely present or very weak in the CT salts other than λ - $(BETS)_2 \cdot FeCl_4$ (8) and κ - $(BETS)_2 \cdot FeBr_4$ (4, 5), in which significant interaction however begins to occur at temperatures lower than 10K. Because of these circumstances, current attention is directed toward developing new molecular/organic systems with much stronger π/d interaction. Very recently, we have succeeded in the synthesis of new donor molecules, tetrathiafulvaleno-thioguinone-1,3dithiolemethides and -quinone-1,3-dithiolemethides substituted with two methylthio or one ethylenedithio groups (9, 10), which have an electron-donating ability comparable to TTF and can also capture several magnetic-metal salts via coordination to the thiocarbonyl sulfur or carbonyl oxygen atom. Indeed, the thioquinones formed 1:1 complexes with

¹To whom correspondence should be addressed at Research Institute for Advanced Science and Technology, Osaka, Prefecture University, Osaka 599-8570, Japan. Fax: +81-72-252-4175; E-mail: toyonari@ riast.osakafu-u.ac.jp.

CuBr₂ (11). Especially for the complex of the ethylenedithio-substituted derivative comparatively high roomtemperature electrical conductivity $(4 \,\mathrm{S \, cm^{-1}})$ was observed by virtue of moderate electron transfer from the thioquione to CuBr₂ moieties. However, as a result of semiconducting property with comparatively large activation energy of 0.18 eV, the d spins partly residing on the $CuBr_2$ moieties were subject to very weak and antiferromagnetic interaction. When CuCl₂, FeCl₃ or FeBr₃ were used in the place of CuBr₂ as a coordination partner for the thioquinones, instead of a complex such as the above CT salts with counteranions of $CuCl_4^{2-}$ (10), $FeCl_4^{-}$ (12) and $FeBr_4^{-}$ (12) were obtained, whose electrical conducting properties were semiconducting or insulating, as also expected from the fact that each of the thioquinones molecules forming a onedimensional stacking are charged +1 or +2/3. Furthermore, it was probable that the d spins of the counteranions have no significant interaction with each other by aid of the conducting π electrons. The reaction of the quinones with CuCl₂, CuBr₂, FeCl₃ or FeBr₃ remain uninvestigated so far. First of all, we investigated the reaction of the ethylenedithio-substituted derivative (1) with $FeCl_3$ or FeBr₃, and also with the corresponding non-magnetic GaBr₃. In all the cases, the CT salts with counteranions of $FeCl_4^-$, $FeBr_4^-$ or $GaBr_4^-$ were obtained, which have a composition in the ratio of 1:counteranion = 2:1, that is, $1_2 \cdot \text{FeCl}_4$, $1_2 \cdot \text{FeBr}_4$ and $1_2 \cdot \text{GaBr}_4$. If a uniform or quasiuniform stacking of 1 was formed in the CT salts, each of the molecules will be charged $+\frac{1}{2}$, so that it is much expected that both metallic conductivity and

specific ordering of d spins of the magnetic counteranions are achieved. Here, we report on the crystal structures, and electrical conducting and magnetic properties of the three CT salts.

EXPERIMENTAL

Plate crystals of $1_2 \cdot \text{FeBr}_4$, $1_2 \cdot \text{GaBr}_4$ and $1_2 \cdot \text{FeCl}_4$ CT salts were prepared using a two-phase contact method. Thus, a solution of $1 (3 \text{ mg}, 7.3 \times 10^{-3} \text{ mmol})$ in CS₂ (5 mL) was contacted with a solution of FeBr₃ (22 mg, $7.3 \times 10^{-2} \text{ mmol})$, GaBr₃ (23 mg, $7.3 \times 10^{-2} \text{ mmol})$ or FeCl₃ (11.8 mg, $7.3 \times 10^{-2} \text{ mmol})$ in CH₃CN (4 mL) at room temperature, and the two-phase solution was kept at room temperature. After about 1 week, black-colored plate crystals of $1_2 \cdot \text{FeBr}_4$, $1_2 \cdot \text{GaBr}_4$ and $1_2 \cdot \text{FeCl}_4$ appeared at the interface between the two solutions. Their elemental analyses gave satisfactory results. Calcd for $1_2 \cdot FeBr_4$ (C₂₂H₁₂S₁₈O₂FeBr₄): C, 22.08; H, 1.01. Found: C, 22.15; H, 1.20. Calcd for $1_2 \cdot GaBr_4$ (C₂₂H₁₂S₁₈O₂GaBr₄): C, 21.82; H, 1.00. Found: C, 21.82; H, 1.02. Calcd for $1_2 \cdot FeCl_4$ (C₂₂H₁₂S₁₈O₂FeCl₄): C, 25.93; H, 1.09. Found: C, 26.10; H, 1.11.

X-ray diffraction data were collected at 113K for the plate crystals of $\mathbf{1}_2 \cdot \text{FeBr}_4$, $\mathbf{1}_2 \cdot \text{GaBr}_4$ and $\mathbf{1}_2 \cdot \text{FeCl}_4$ on a Rigaku RAXIS-RAPID imaging plate diffractometer with graphite monochromated ΜοΚα radiation $(\lambda = 0.71069 \text{ Å})$. Table 1 shows the crystallographic data for their crystals. The structures were solved by direct methods (SIR92 (13), SIR97 (14), and DIRDIF94 (15)), and refined on F_0^2 with full-matrix least-squares analysis. Calculated positions of the hydrogen atoms $[d(C-H) = 0.95\text{\AA}]$ were included in the final calculations. All the calculations were performed by using the teXsan crystallographic software package of the Molecular Structure Corporation (16). For $1_2 \cdot \text{FeBr}_4$, the final cycle of least-squares refinement on F_0^2 for 8095 data and 406 parameters converged to $wR_2(F_0^2) = 0.116$ for all the data and to $R_1 = 0.053$ for 8090 data with $I \ge -10.00\sigma(I)$. For $\mathbf{1}_2 \cdot \mathbf{GaBr_4}$, the final cycle of least-squares refinement on F_0^2 for 7581 data and 406 parameters converged on wR_2 $(F_0^2) = 0.094$ for all the data and to $R_1 = 0.035$ for 7576 data with $I \ge -3.00\sigma(I)$. For $\mathbf{1}_2 \cdot \text{FeCl}_4$, the final cycle of least-squares refinement on F_0^2 for 7992 data and 406 parameters converged to $wR_2(F_0^2) = 0.140$ for all the data and to $R_1 = 0.061$ for 7987 data with $I \ge -10.00\sigma(I)$. Atomic coordinates and isotropic thermal parameters are given in Table 2, and selected interatomic distances and bond angles in Table 3.

Electrical conductivity measurement was performed on each of the plate crystals of $1_2 \cdot \text{FeBr}_4$, $1_2 \cdot \text{GaBr}_4$ and $1_2 \cdot \text{FeCl}_4$ using a four-probe method in the temperature range from 60–100 to 300 K. The contact to the electrode was performed with gold paste. The magnetic susceptibility (χ_{obs}) of the microcrystals of $1_2 \cdot \text{FeBr}_4$ and $1_2 \cdot \text{FeCl}_4$ was measured between 5 and 300 K under an applied field of 1 kOe using a SQUID magnetometer (MPMS XL, Quantum Design). The paramagnetic susceptibility (χ_p) was obtained by subtracting the diamagnetic contribution calculated by Pascal method (17) from χ_{obs} .

RESULTS AND DISCUSSION

Crystal Structures of $1_2 \cdot FeBr_4$, $1_2 \cdot GaBr_4$ and $1_2 \cdot FeCl_4$

For $1_2 \cdot \text{FeBr}_4$ and $1_2 \cdot \text{GaBr}_4$, both crystals involve two crystallographically independent 1 molecules, which have almost the same structures. Each molecular skeleton excepting for the terminal ethylene group has very high

	$1_2 \cdot \mathbf{FeBr}_4$	$1_2 \cdot \mathbf{GaBr}_4$	$1_2 \cdot FeCl_4$
Formula	$(C_{11}H_6OS_8)_2 \cdot FeBr_4$	$(C_{11}H_6OS_8)_2 \cdot GaBr_4$	(C11H6OS8)2 · FeCl4
Mr	1196.88	1210.73	1018.95
Crystal size (mm ³)	0.10 imes 0.10 imes 0.10	0.15 imes 0.02 imes 0.02	0.15 imes 0.15 imes 0.02
Crystal habit	Black plate	Black plate	Black plate
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$
a (Å)	6.5131(3)	6.5398(1)	6.5021(3)
b (Å)	39.760(2)	39.7885(8)	39.014(2)
<i>c</i> (Å)	13.944(1)	13.9312(3)	13.9108(7)
α (deg)	90.000	90.000	90.000
β (deg)	97.392(2)	97.416(1)	98.773(2)
γ (deg)	90.000	90.000	90.000
Cell volume ($Å^3$)	3580.8(4)	3594.7(1)	3487.5(3)
Ζ	4	4	4
Temperature (K)	113	113	113
$\rho (g \text{ cm}^{-3})$	2.116	2.237	1.941
$\mu_{MoK\alpha}$ (cm ⁻¹)	54.69	61.82	17.24
θ_{\max}	54.8	55.0	55.0
Scan type	ω	ω	ω
Unique data	8090	7576	7986
R _{merge}	0.08	0.05	0.14
Weighting scheme	$1/\sigma^2 (F_0^2)$	$1/\sigma^2 (F_0^2)$	$1/\sigma^2 (F_0^2)$
Residual electron density (min, max) (eÅ ³)	-1.23, 1.25	-0.99, 0.76	-1.40, 1.34
Number of parameters refined	406	406	406
R_1	0.053	0.035	0.061
$R_{ m w}$	0.116	0.094	0.139

 TABLE 1

 Crystallographic Data for the Plate Crystals of $1_2 \cdot \text{FeBr}_4$, $1_2 \cdot \text{GaBr}_4$ and $1_2 \cdot \text{FeCl}_4$

planarity, although the twisted angles between different rings are $1-6^{\circ}$.

The projections down to bc and ab planes for the crystal structure of $1_2 \cdot \text{FeBr}_4$ are shown in Figs. 1a and 1b, respectively. As seen from Fig. 1a, each of the two 1 molecules (A and B) have the same direction of their molecular long axes. The interplanar distance is 3.41 Å, which is fairly shorter than " π -cloud thickness (3.50 Å)". (18). Moreover, Fig. 2a shows that there is a very effective overlap between the central tetrathiafulvalene parts of A and **B**, which possess large atomic orbital coefficients in the highest occupied molecular orbital of 1 molecule, so that this pair can be regarded as a dimer. Such A/B dimers are stacked along the *c*-axis with changing the direction of the molecular long axes alternately to form a one-dimensional column. In contrast to the A/B contact, the B/A' overlap between the dimers is not effective (see Fig. 2b), although the interplanar distance (3.47 Å) is slightly shorter than " π -cloud thickness." On the other hand, there are also effective side-by-side contacts between A/A, B/B and A/B. The short contacts are seen between the S atom of an ethylenedithio group of one A(B) molecule and the S atoms of a 1,3-dithiole ring and an ethylenedithio group of the other A(B) molecule, and their distances are 3.52 (3.50) and 3.48(3.58)Å, respectively, which are fairly shorter than the

sum (3.70 Å) of van der Waals' radii of two S atoms (18). In addition, there is a short contact of S atoms (3.49 Å) between a 1,3-dithiolane-2thione ring of A and a 1,3dithiole ring of **B**. The stacking structure of **1** molecules in $1_2 \cdot \text{GaBr}_4$ is very similar to that in $1_2 \cdot \text{FeBr}_4$, but there is a very small difference. It is a matter of course, since both GaBr₄⁻ and FeBr₄⁻ ions have almost the same tetrahedrallike geometry around the central Ga and Fe atoms, and have almost the same volume, except that $GaBr_4^-$ ion is non-magnetic in contrast to the magnetic FeBr₄⁻ ion. The interplanar distances between A/B (A'/B') and B/A' are 3.40 and 3.48 Å, which are shorter and longer by 0.01 Å than the corresponding values in $1_2 \cdot \text{FeBr}_4$, respectively. In addition, the side-by-side contacts between A/A, B/B and **A/B** have slightly different distances by 0.01 Å from those in $\mathbf{1}_2 \cdot \text{FeBr}_4$, except for the prolonged contact (3.70 Å) of S atoms between a 1,3-dithiolane-2-thione ring of A and a 1,3-dithiole ring of **B**.

On the other hand, the FeBr₄⁻ ions in $1_2 \cdot \text{FeBr}_4$ and the GaBr₄⁻ ions in $1_2 \cdot \text{GaBr}_4$ have both a slightly distorted tetrahedral geometry, since the six Br–Fe–Br bond angles (105.4°, 108.2°, 108.8°, 110.0°, 111.7° and 112.6°) for the FeBr₄⁻ ion, and the six Br–Ga–Br bond angles (105.2°, 108.4°, 109.1°, 110.4°, 111.8° and 111.8°) for the GaBr₄⁻ ion are significantly different from each other, although the

	T	ABLE 2				TABLI	E 2 —Continue	d	
Fractional A	tomic Coord. Temperat	linates and E ture Factors	Quivalent Is (Å)	otropic	Atom	x	у	Ζ	$U_{ m eq}$
Atom				I I	S(6)	0.0149(1)	0.27197(3)	0.50016(8)	0.0223(2)
Atom	л	У	2	$U_{\rm eq}$	$\mathbf{S}(7)$	0.53/4(2)	0.16694(3)	0.57775(8)	0.244(3)
(1) For $1_2 \cdot FeBr_4$					S(8)	0.1012(2)	0.15124(3)	0.52214(8)	0.0246(3)
Br(1)	1.0853(1)	0.02989(2)	0.90307(5)	0.0308(2)	S(9)	0.0010(1)	0.20039(3)	0.83400(8)	0.0221(3)
Br(2)	1.0893(1)	0.09961(2)	0.72481(7)	0.0355(2)	S(10) S(11)	0.1810(2) 0.4726(1)	0.1/650(3)	0.77944(7)	0.0214(2) 0.0205(2)
Br(3)	0.5913(1)	0.04968(2)	0.73959(6)	0.0336(2)	S(11) S(12)	0.4726(1)	0.2/55/(2)	0.80149(8)	0.0205(2)
Br(4)	1.0300(1)	0.00756(2)	0.63192(6)	0.0341(2)	S(12)	0.0408(1)	0.29804(3)	0.75272(8)	0.0216(2)
Fe(1)	0.9500(2)	0.04614(3)	0.74669(7)	0.0216(3)	S(13) S(14)	0.6194(2)	0.35140(3)	0.83288(8) 0.782(2(7))	0.0215(2)
S(1)	0.8987(3)	0.34865(5)	0.4761(1)	0.0266(5)	S(14) S(15)	0.1930(1)	0.3/45/(3)	0.78363(7)	0.020/(2)
S(2)	0.4613(3)	0.33283(5)	0.4200(1)	0.0268(5)	S(15)	0.7975(2)	0.41/48(3)	0.8/944(9)	0.02/6(3)
S(3)	0.9860(3)	0.22791(5)	0.4978(1)	0.0242(5)	S(16)	0.2840(2)	0.44644(3)	0.818/4(9)	0.302(3)
S(4)	0.5559(3)	0.25282(5)	0.4492(1)	0.0221(5)	O(1)	-0.1093(4)	0.20890(7)	0.4835(2)	0.0278(8)
S(5)	0.8461(3)	0.15338(5)	0.4642(1)	0.0222(5)	O(2)	-0.0644(4)	0.23390(7)	0.7278(2)	0.0283(8)
S(6)	0.4095(3)	0.17318(5)	0.4149(1)	0.0220(5)	C(1)	0.6495(6)	0.4320(1)	0.5218(3)	0.028(1)
S(7)	0.7703(3)	0.08065(5)	0.4651(2)	0.0303(5)	C(2)	0.4544(7)	0.4463(1)	0.5534(3)	0.027(1)
S(8)	0.2516(3)	0.10283(5)	0.4020(1)	0.0263(5)	C(3)	0.5361(6)	0.36992(10)	0.5767(3)	0.0205(10)
S(9)	0.8210(3)	0.32350(5)	0.2184(1)	0.0231(5)	C(4)	0.3380(6)	0.3791(1)	0.5518(3)	0.0209(10)
S(10)	0.4000(3)	0.29978(5)	0.1634(1)	0.0227(5)	C(5)	0.3355(6)	0.31379(10)	0.5496(3)	0.0177(9)
S(11)	0.9606(3)	0.20200(5)	0.2451(1)	0.0227(5)	C(6)	0.2747(6)	0.28114(10)	0.5353(3)	0.0184(9)
S(12)	0.5280(3)	0.20200(3) 0.22440(4)	0.2151(1) 0.1960(1)	0.0232(3)	C(7)	0.2514(6)	0.21608(10)	0.5290(3)	0.0191(10)
S(12)	0.3280(3) 0.8085(3)	0.22440(4) 0.12539(4)	0.1900(1) 0.2149(1)	0.0210(3)	C(8)	0.0416(6)	0.2272(1)	0.5018(3)	0.023(1)
S(13)	0.3810(3)	0.12337(4) 0.14847(5)	0.2149(1) 0.1649(1)	0.0210(5)	C(9)	0.2918(6)	0.18216(10)	0.5403(3)	0.0188(10)
S(14)	0.3819(3) 0.7181(3)	0.14847(5) 0.05342(5)	0.1049(1) 0.1806(2)	0.0227(5)	C(10)	0.4648(7)	0.1249(1)	0.5810(3)	0.030(1)
S(15) S(16)	0.7131(3) 0.2042(3)	0.03342(3)	0.1800(2)	0.0327(0)	C(11)	0.2673(7)	0.1179(1)	0.5548(3)	0.029(1)
O(1)	1.1084(8)	0.08223(3)	0.1139(1) 0.5144(4)	0.0294(3)	C(12)	0.5600(7)	0.1577(1)	0.8440(3)	0.025(1)
O(1)	1.1004(0)	0.2908(1)	0.3144(4) 0.2705(3)	0.031(2)	C(13)	0.3689(7)	0.14698(10)	0.8174(3)	0.025(1)
O(2)	1.0070(8)	0.2001(1) 0.2821(2)	0.2703(3)	0.027(1)	C(14)	0.3483(6)	0.21036(10)	0.7958(3)	0.0177(9)
C(1)	0.732(1)	0.3821(2) 0.2740(2)	0.4430(3) 0.4162(5)	0.030(2)	C(15)	0.2896(6)	0.24370(10)	0.7817(3)	0.0185(9)
C(2)	0.334(1)	0.3749(2)	0.4103(3)	0.031(2)	C(16)	0.0794(6)	0.2531(1)	0.7507(3)	0.022(1)
C(3)	0.708(1)	0.3177(2)	0.45/1(5)	0.022(1)	C(17)	0.2991(6)	0.3085(1)	0.7860(3)	0.0205(10)
C(4)	0.957(1)	0.2726(2)	0.4954(5)	0.022(1)	C(18)	0.3627(6)	0.34098(10)	0.7984(3)	0.0185(10)
C(5)	0.750(1)	0.2836(2)	0.4705(5)	0.022(2)	C(19)	0.5753(6)	0.3944(1)	0.8411(3)	0.023(1)
C(6)	0.726(1)	0.2183(2)	0.4623(5)	0.021(1)	C(20)	0.3785(6)	0.4053(1)	0.8188(3)	0.0215(10)
C(/)	0.664(1)	0.1861(2)	0.4483(5)	0.021(1)	C(21)	0.7070(7)	0.4592(1)	0.8476(3)	0.026(1)
C(8)	0.662(1)	0.1207(2)	0.4447(5)	0.022(2)	C(22)	0.5056(7)	0.4677(1)	0.8831(3)	0.026(1)
C(9)	0.465(1)	0.1299(2)	0.4221(5)	0.020(1)					
C(10)	0.546(1)	0.0530(2)	0.4467(6)	0.029(2)	(3) For $I_2 \cdot FeCl_4$				
C(11)	0.350(1)	0.0680(2)	0.4763(6)	0.030(2)	Fe(1)	0.9637(2)	0.45377(3)	0.23862(9)	0.0289(3)
C(12)	0.632(1)	0.3535(2)	0.1809(5)	0.022(2)	CI(1)	1.1062(3)	0.46788(5)	0.3875(2)	0.0393(6)
C(13)	0.442(1)	0.3424(2)	0.1542(5)	0.024(2)	Cl(2)	1.0301(4)	0.49162(5)	0.1316(2)	0.0426(7)
C(14)	0.652(1)	0.2895(2)	0.2013(5)	0.018(1)	CI(3)	0.6262(3)	0.45053(6)	0.2342(2)	0.0386(6)
C(15)	0.713(1)	0.2564(2)	0.2168(5)	0.020(2)	Cl(4)	1.0928(3)	0.40284(5)	0.2133(2)	0.0436(7)
C(16)	0.924(1)	0.24/1(2)	0.2467(5)	0.022(1)	S(1)	0.7692(3)	0.42205(5)	-0.03/3(2)	0.0328(6)
C(17)	0.703(1)	0.1917(2)	0.2121(5)	0.020(1)	S(2)	0.2439(3)	0.40005(5)	-0.0991(2)	0.0307(6)
C(18)	0.637(1)	0.1586(2)	0.1989(5)	0.021(1)	S(3)	0.8420(3)	0.34770(5)	-0.0375(2)	0.0265(6)
C(19)	0.620(1)	0.0947(2)	0.1793(5)	0.024(2)	S(4)	0.3991(3)	0.32810(5)	-0.0873(2)	0.0255(6)
C(20)	0.426(1)	0.1055(2)	0.1569(5)	0.024(1)	S(5)	0.9785(3)	0.27124(5)	-0.0056(2)	0.0289(6)
C(21)	0.497(1)	0.0321(2)	0.1177(6)	0.031(2)	S(6)	0.5425(3)	0.24665(5)	-0.0561(2)	0.0260(6)
C(22)	0.296(1)	0.0409(2)	0.1526(5)	0.028(2)	S (7)	0.8789(3)	0.14818(5)	-0.0270(2)	0.0306(6)
					S(8)	0.4394(3)	0.16514(5)	-0.0847(2)	0.0310(6)
(2) For $1_2 \cdot GaBr_4$					S(9)	0.6969(3)	0.45055(5)	-0.3187(2)	0.364(6)
Br(1)	-0.08570(7)	0.47041(1)	0.09771(3)	0.0286(1)	S(10)	0.1793(3)	0.42078(5)	-0.3849(2)	0.333(6)
Br(2)	0.40775(6)	0.45000(1)	0.25904(3)	0.0306(1)	S(11)	0.7919(3)	0.37721(5)	-0.2872(2)	0.0274(6)
Br(3)	-0.08943(6)	0.40066(1)	0.27374(4)	0.0299(1)	S(12)	0.3627(3)	0.35333(5)	-0.3392(2)	0.0267(6)
Br(4)	-0.02699(7)	0.49135(1)	0.36942(3)	0.0306(1)	S(13)	0.9528(3)	0.29997(5)	-0.2577(2)	0.0282(6)
Ga(1)	0.05162(7)	0.45364(1)	0.25291(3)	0.0201(1)	S(14)	0.5193(3)	0.27548(5)	-0.3081(2)	0.0269(6)
S(1)	0.7504(2)	0.39655(3)	0.59602(8)	0.0247(3)	S(15)	0.8307(3)	0.17580(5)	-0.2829(2)	0.0300(6)
S(2)	0.2311(2)	0.41912(3)	0.53253(9)	0.0270(3)	S (16)	0.4001(3)	0.19794(5)	-0.3378(2)	0.0290(6)
S(3)	0.5912(1)	0.32642(3)	0.58345(7)	0.0199(2)	O(1)	1.0962(8)	0.2063(1)	0.0114(4)	0.034(2)
S(4)	0.1552(1)	0.34638(3)	0.53379(7)	0.0205(2)	O(2)	0.0690(8)	0.2349(1)	-0.2337(4)	0.033(2)
S(5)	0.4437(1)	0.24687(2)	0.54817(7)	0.0198(2)	C(1)	0.546(1)	0.4504(2)	-0.0538(6)	0.037(3)

TABLE 2_Continued

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TABLE 2—Continued				TABLE 3—Continued				
$ \begin{array}{c} \hline C_2 & 0.332(1) & 0.435(2) & -0.022(6) & 0.022(2) \\ C_3 & 0.62(1) & 0.345(2) & -0.039(6) & 0.022(2) \\ C_4 & 0.456(1) & 0.724(2) & -0.079(6) & 0.022(2) \\ R(1) - G(n(1) & 3.334(6) & S(12) - C(13) \\ C_5 & 0.57(1) & 0.214(2) & -0.045(6) & 0.022(2) \\ R(1) - G(n(1) & 3.334(6) & S(12) - C(13) \\ C_5 & 0.57(1) & 0.217(2) & -0.041(6) & 0.028(2) \\ C_7 & 0.047(1) & 0.235(2) & -0.003(6) \\ C_7 & 0.047(1) & 0.235(2) & -0.003(6) \\ C_8 & 0.734(1) & 0.214(2) & -0.056(6) \\ C_8 & 0.734(1) & 0.214(2) & -0.056(6) \\ C_8 & 0.734(1) & 0.214(2) & -0.056(6) \\ C_1 & 0.089(1) & 0.116(2) & -0.049(6) \\ C_1 & 0.089(1) & 0.116(2) & -0.049(6) \\ C_1 & 0.089(1) & 0.116(2) & -0.049(6) \\ C_1 & 0.089(1) & 0.114(2) & -0.056(6) \\ C_1 & 0.089(1) & 0.114(2) & -0.056(6) \\ C_1 & 0.083(1) & 0.114(2) & -0.056(6) \\ C_1 & 0.083(1) & 0.033(2) & 3.63+C(3) & 1.736(4) \\ C_1 & 0.003(1) & 0.048(12) & -0.358(0) \\ C_1 & 0.004(1) & 0.048(12) & -0.358(0) \\ C_1 & 0.048(1) & 0.048(12) & -0.338(0) \\ C_1 & 0.048(1) & 0$	Atom	x	У	Ζ	$U_{ m eq}$	(2) For $I_2 \cdot GaBr_4$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	0.352(1)	0.4353(2)	-0.0223(6)	0.032(2)	Br(1)– $Ga(1)$	2.3292(6)	S(12)-C(16)	1.807(4)
$ \begin{array}{ccccc} (c) & 0.456(1) & 0.3724(2) & -0.0794(6) & 0.022(2) & Br(1) & Gal(1) & 3.3341(6) & S(13) & C138 & 1.7364(1) \\ C(5) & 0.571(1) & 0.2817(2) & -0.0814(6) & 0.028(2) & S(1)-C(1) & 1.8224(4) & S(14)-C(28) & 1.734(4) \\ C(6) & 0.734(1) & 0.2347(2) & -0.084(6) & 0.028(2) & S(1)-C(1) & 1.8224(4) & S(14)-C(28) & 1.734(4) \\ C(8) & 0.734(1) & 0.2148(2) & -0.086(6) & 0.028(2) & S(1)-C(2) & 1.8105 & S(15)-C(21) & 1.7344(4) \\ C(9) & 0.089(1) & 0.148(2) & -0.0496(6) & 0.028(2) & S(2)-C(2) & 1.8105 & S(15)-C(21) & 1.734(4) \\ C(10) & 0.707(1) & 0.148(2) & -0.0396(6) & 0.033(3) & S(3)-C(3) & 1.738(4) & S(16)-C(23) & 1.736(4) \\ C(11) & 0.028(1) & 0.148(2) & -0.0386(6) & 0.033(3) & S(3)-C(3) & 1.734(4) & S(16)-C(23) & 1.734(4) \\ C(12) & 0.472(1) & 0.4718(2) & -0.0386(6) & 0.033(3) & S(3)-C(3) & 1.734(4) & C(1)-C(1) & 1.238(6) \\ C(13) & 0.0481(2) & -0.3297(6) & 0.032(3) & S(5)-C(7) & 1.731(4) & C(1)-C(1) & 1.334(6) \\ C(14) & 0.0481(2) & -0.3297(6) & 0.022(2) & S(5)-C(7) & 1.731(4) & C(1)-C(1) & 1.334(6) \\ C(15) & 0.0481(1) & 0.397(2) & -0.397(6) & 0.022(2) & S(5)-C(1) & 1.734(4) & C(1)-C(2) & 1.434(5) \\ C(13) & 0.0481(1) & 0.397(2) & -0.397(6) & 0.022(2) & S(5)-C(1) & 1.731(4) & C(1)-C(1) & 1.328(6) \\ C(13) & 0.048(1) & 0.345(2) & -0.321(6) & 0.022(2) & S(5)-C(1) & 1.734(4) & C(1)-C(1) & 1.328(6) \\ C(13) & 0.048(1) & 0.345(2) & -0.337(6) & 0.022(2) & S(5)-C(1) & 1.734(4) & C(1)-C(1) & 1.328(6) \\ C(14) & 0.048(1) & 0.345(2) & -0.337(6) & 0.022(2) & S(5)-C(1) & 1.734(4) & C(1)-C(1) & 1.328(6) \\ C(15) & 0.044(1) & 0.142(2) & -0.312(6) & 0.022(2) & S(5)-C(1) & 1.734(4) & C(1)-C(1) & 1.328(6) \\ C(12) & 0.440(1) & 0.142(2) & -0.337(6) & 0.027(2) & S(5)-C(1) & 1.734(6) & C(1)-C(1) & 1.328(6) \\ S(1)-C(1) & 1.734(4) & S(1)-C(1) & 1.73(4) & S(1)-C(1) & 1.347(7) \\ S(1)-C(1) & 1.734(4) & C(1)-C(1) & 1.348(6) & S(1)-C(1) & 1.348(6) \\ S(1)-C(1) & 1.734(4) & C(1)-C(1) & 1.348(6) & S(1)-C(1) & 1.348(6) \\ S(1)-C(1) & 1.734(4) & S(1)-C(1) & 1.734(6) & S(1)-C(1) & 1.348(6) \\ S(1)-C(1) & 1.734(4) & S(1)-C(1) & 1.734(6) & S(1)-C(1) & 1.348(6)$	C(3)	0.662(1)	0.3814(2)	-0.0549(6)	0.024(2)	Br(2)–Ga(1)	2.3241(6)	S(12)-C(17)	1.743(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	0.456(1)	0.3724(2)	-0.0794(6)	0.022(2)	Br(3)– $Ga(1)$	3.3341(6)	S(13)-C(18)	1.736(4)
$ \begin{array}{ccccc} C(6) & 0.28(7) & 0.28(7) & -0.043(6) & 0.028(2) & S(1)-C(3) & 1.52(4) & S(1)-C(3) & 1.73(4) \\ C(7) & 0.474(1) & 0.2148(2) & -0.046(6) & 0.025(2) & S(2)-C(3) & 1.54(4) & S(15)-C(1) & 1.74(4) \\ C(9) & 0.689(1) & 0.181(2) & -0.045(6) & 0.025(2) & S(2)-C(4) & 1.74(4) & S(15)-C(1) & 1.79(4) \\ C(10) & 0.707(1) & 0.1145(2) & -0.0605(6) & 0.033(3) & S(3)-C(5) & 1.75(4) & S(1)-C(2) & 1.512(4) \\ C(12) & 0.472(1) & 0.4718(2) & -0.355(7) & 0.053(3) & S(4)-C(5) & 1.74(4) & O(1)-C(8) & 1.226(5) \\ C(14) & 0.030(1) & 0.463(12) & -0.3250(6) & 0.035(3) & S(4)-C(5) & 1.74(4) & O(2)-C(1) & 1.234(6) \\ C(15) & 0.045(1) & 0.397(2) & -0.3246(6) & 0.027(2) & S(5)-C(7) & 1.75(14) & C(3)-C(6) & 1.245(5) \\ C(16) & 0.623(1) & 0.397(2) & -0.290(6) & 0.022(2) & S(5)-C(7) & 1.75(14) & C(3)-C(6) & 1.246(5) \\ C(16) & 0.043(1) & 0.397(2) & -0.2907(6) & 0.022(2) & S(6)-C(6) & 1.796(4) & C(7)-C(8) & 1.444(5) \\ C(19) & 0.038(1) & 0.234(2) & -0.23416(6) & 0.027(2) & S(6)-C(7) & 1.73(14) & C(7)-C(9) & 1.338(6) \\ C(20) & 0.054(1) & 0.2902(2) & -0.3902(6) & 0.027(2) & S(6)-C(1) & 1.736(4) & C(7)-C(9) & 1.338(6) \\ C(20) & 0.054(1) & 0.2902(2) & -0.3902(6) & 0.027(2) & S(6)-C(1) & 1.736(4) & C(1)-C(7) & 1.388(6) \\ C(20) & 0.054(1) & 0.2902(2) & -0.3902(6) & 0.027(2) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.326(6) \\ C(21) & 0.454(1) & 0.1542(2) & -0.3453(6) & 0.037(3) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.356(6) \\ C(10) & 0.054(1) & 0.2902(2) & -0.3902(6) & 0.027(2) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.356(6) \\ C(21) & 0.454(1) & 0.1542(2) & -0.3453(6) & 0.037(3) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.356(6) \\ C(21) & 0.454(1) & 0.1542(2) & -0.3453(6) & 0.027(2) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.356(6) \\ C(10) & 0.544(1) & 0.1542(2) & -0.3453(6) & 0.027(2) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.356(6) \\ S(1)-C(1) & 1.244(8) & S(1)-C(1) & 1.57(6) & S(6)-C(1) & 1.736(4) & C(1)-C(1) & 1.356(6) \\ S(1)-C(1) & 1.736(7) & S(1)-C(1) & 1.757(6) & S(1)-C(1) & 1.757(7) & S(1)-C(1) & 1.757(7) & S(1)-C(1) & 1.757(7) & S(1)-C(1) & 1.757(7) & S(1)-C(1)$	C(5)	0.657(1)	0.3146(2)	-0.0549(6)	0.021(2)	Br(4)– $Ga(1)$	2.3164(6)	S(13)-C(19)	1.741(4)
$ \begin{array}{cccccc} C(7) & 0.47(1) & 0.225(c) & -0.087(6) & 0.031(2) & S(1)-C(3) & 1.75(4) & S(1)-C(20) & 1.747(4) \\ C(8) & 0.73(1) & 0.148(2) & -0.0458(6) & 0.026(2) & S(2)-C(3) & 1.76(4) & S(1)-C(3) & 1.79(4) \\ C(10) & 0.058(1) & 0.184(2) & -0.0458(6) & 0.026(2) & S(2)-C(3) & 1.75(4) & S(1)-C(3) & 1.75(4) \\ C(11) & 0.058(1) & 0.124(2) & -0.085(17) & 0.035(3) & S(3)-C(3) & 1.75(4) & S(1)-C(2) & 1.312(4) \\ C(12) & 0.47(1) & 0.471(2) & -0.358(7) & 0.035(3) & S(3)-C(3) & 1.76(4) & O(1)-C(3) & 1.222(5) \\ C(15) & 0.068(1) & 0.037(2) & -0.358(6) & 0.027(2) & S(5)-C(6) & 1.79(4) & C(1)-C(2) & 1.318(6) \\ C(15) & 0.068(1) & 0.397(2) & -0.345(6) & 0.027(2) & S(5)-C(6) & 1.74(4) & C(5)-C(6) & 1.348(5) \\ C(15) & 0.068(1) & 0.397(2) & -0.345(6) & 0.027(2) & S(5)-C(7) & 1.73(4) & C(5)-C(6) & 1.348(5) \\ C(15) & 0.068(1) & 0.397(2) & -0.397(6) & 0.022(2) & S(6)-C(7) & 1.73(4) & C(7)-C(8) & 1.438(5) \\ C(13) & 0.397(1) & 0.397(2) & -0.397(6) & 0.022(2) & S(6)-C(7) & 1.73(4) & C(7)-C(8) & 1.438(5) \\ C(13) & 0.397(1) & 0.237(2) & -0.307(6) & 0.027(2) & S(6)-C(7) & 1.73(4) & C(7)-C(8) & 1.38(6) \\ C(13) & 0.397(1) & 0.234(2) & -0.345(6) & 0.034(3) & S(8)-C(10) & 1.74(4) & C(1)-C(1) & 1.326(6) \\ C(20) & 0.54(1) & 0.234(2) & -0.345(6) & 0.34(3) & S(8)-C(12) & 1.727(4) & C(15)-C(16) & 1.345(5) \\ S(10)-C(13) & 1.73(4) & C(1)-C(18) & 1.232(6) \\ S(10)-C(13) & 1.73(4) & C(1)-C(18) & 1.232(6) \\ S(10)-C(13) & 1.73(4) & C(1)-C(18) & 1.232(6) \\ S(10)-C(13) & 1.73(4) & C(1)-C(18) & 1.326(6) \\ S(10)-C(13) & 1.73(4) & C(1)-C(18) & 1.33(6) \\ S(10)-C(13) & 1.73(4) & C(1)-C(18) & 1.33(6) \\ S(1)-C(14) & 1.73(4) & C(1)-C(16) & 1.33(6) \\ S(1)-C(14) & 1.73(4) & C(1)-C(16) & 1.73(6) \\ S(1)-C(14) & 1.73(4) & C(1)-C(16) & 1.33(6) \\ S(1)-C(14) & 1.73(4) & C(1)-C(16) & 1.33(6) \\ S(1)-C(1$	C(6)	0.715(1)	0.2817(2)	-0.0413(6)	0.028(2)	S(1)-C(1)	1.822(4)	S(14)–C(18)	1.732(4)
$ \begin{array}{c} C(8) & 0.214(2) & -0.0364(6) & 0.025(2) & S(2)-C(3) & 1.510(5) & S(15)-C(19) & 1.574(4) \\ C(10) & 0.070(1) & 0.1145(2) & -0.0605(6) & 0.033(3) & S(3)-C(3) & 1.794(4) & S(15)-C(20) & 1.750(4) \\ C(12) & 0.071(1) & 0.1145(2) & -0.0365(6) & 0.033(3) & S(3)-C(3) & 1.794(4) & S(16)-C(20) & 1.215(4) \\ C(12) & 0.071(1) & 0.015(2) & -0.0350(7) & 0.035(3) & S(4)-C(4) & 1.704(4) & O(2)-C(8) & 1.224(5) \\ C(14) & 0.030(1) & 0.0461(2) & -0.3250(6) & 0.055(3) & S(4)-C(4) & 1.704(4) & O(2)-C(8) & 1.224(5) \\ C(14) & 0.030(1) & 0.0461(2) & -0.3218(6) & 0.027(2) & S(5)-C(7) & 1.714(4) & C(2)-C(4) & 1.345(6) \\ C(15) & 0.045(1) & 0.037(2) & -0.2046(6) & 0.027(2) & S(5)-C(7) & 1.731(4) & C(7)-C(8) & 1.456(6) \\ C(16) & 0.022(1) & 0.3427(2) & -0.348(6) & 0.027(2) & S(6)-C(16) & 1.734(4) & C(1)-C(7) & 1.383(6) \\ C(16) & 0.023(1) & 0.3427(2) & -0.348(6) & 0.027(2) & S(6)-C(16) & 1.734(4) & C(1)-C(7) & 1.538(6) \\ C(13) & 0.018(1) & 0.2541(2) & -0.281(6) & 0.028(2) & S(7)-C(19) & 1.214(4) & C(10)-C(11) & 1.526(6) \\ C(20) & 0.054(1) & 0.292(2) & -0.302(6) & 0.027(2) & S(6)-C(10) & 1.734(4) & C(1)-C(10) & 1.383(6) \\ C(22) & 0.444(1) & 0.1442(2) & -0.3453(6) & 0.027(2) & S(6)-C(11) & 1.736(4) & C(1)-C(13) & 1.527(6) \\ C(21) & 0.054(1) & 0.292(2) & -0.302(6) & 0.027(2) & S(6)-C(11) & 1.736(4) & C(1)-C(13) & 1.537(6) \\ C(21) & 0.054(1) & 0.292(2) & -0.3453(6) & 0.027(2) & S(6)-C(11) & 1.734(4) & C(1)-C(10) & 1.384(6) \\ C(22) & 0.444(1) & 0.1442(2) & -0.3453(6) & 0.027(2) & S(6)-C(11) & 1.736(4) & C(1)-C(10) & 1.386(6) \\ C(21) & 0.544(1) & 0.154(2) & -0.3453(6) & 0.027(2) & S(6)-C(11) & 1.734(6) & C(1)-C(10) & 1.384(6) \\ C(22) & 0.444(1) & 0.154(2) & -0.3453(6) & 0.027(2) & S(6)-C(1) & 1.734(6) & S(1)-C(10) & 1.384(6) \\ S(1)-C(1) & 1.234(2) & S(1)-C(1) & 1.244(8) & S(1)-C(1) & 1.344(8) \\ S(1)-C(1) & 1.234(6) & C(1)-C(1) & 1.347(8) & S(1)-C(1) & 1.344(8) & S(1)-C(1) & 1.346(8) \\ S(1)-C(1) & 1.737(7) & S(1)-C(1) & 1.77(7) & S(1)-C(1) & 1.244(8) & S(1)-C(1) & 1.237(7) \\ S(1)-C(1) & 1.734(8) & S(1)-C(2) & 1.738(8) & S(1)-C(2) & 1.738(8) & S$	C(7)	0.947(1)	0.2256(2)	-0.0087(6)	0.031(2)	S(1) - C(3)	1.750(4)	S(14)-C(20)	1.747(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	0.734(1)	0.2148(2)	-0.0364(6)	0.025(2)	S(2)-C(2)	1.810(5)	S(15)-C(19)	1.744(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	0.689(1)	0.1801(2)	-0.0459(6)	0.026(2)	S(2)-C(4)	1.746(4)	S(15)-C(21)	1.799(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	0.707(1)	0.1145(2)	-0.0605(6)	0.033(3)	S(3)–C(3)	1.768(4)	S(16)-C(20)	1.750(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	0.505(1)	0.1221(2)	-0.0861(7)	0.035(3)	S(3) - C(5)	1.752(4)	S(16)–C(22)	1.812(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	0.472(1)	0.4718(2)	-0.3850(7)	0.035(3)	S(4)-C(4)	1.763(4)	O(1)–C(8)	1.226(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	0.269(1)	0.4631(2)	-0.3520(6)	0.035(3)	S(4) - C(5)	1.747(4)	O(2) - C(16)	1.222(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	0.603(1)	0.4081(2)	-0.3218(6)	0.027(2)	S(5) - C(6)	1.750(4)	C(1)-C(2)	1.513(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	0.405(1)	0.3974(2)	-0.3450(6)	0.027(2)	S(5) - C(7)	1./51(4)	C(3) - C(4)	1.348(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	0.623(1)	0.3427(2)	-0.3044(6)	0.027(2)	S(6) - C(6)	1.745(4)	C(5) - C(6)	1.366(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	0.691(1)	0.3097(2)	-0.2907(6)	0.022(2)	S(6) - C(8)	1.790(4)	C(7) = C(8)	1.445(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	0.918(1)	0.2541(2)	-0.2581(6)	0.028(2)	S(7) = C(9)	1./33(4)	C(7) = C(9)	1.380(6)
$\begin{array}{cccccc} C(20) & 0.654(1) & 0.202(2) & -0.302(6) & 0.027(2) & S(3) - C(9) & 1.740(4) & C(12) - C(13) & 1.334(6) \\ C(22) & 0.449(1) & 0.1545(2) & -0.3455(6) & 0.034(3) & S(3) - C(1) & 1.773(4) & C(15) - C(15) & 1.338(6) \\ C(22) & 0.449(1) & 0.1545(2) & -0.3455(6) & 0.034(3) & S(9) - C(12) & 1.777(4) & C(15) - C(15) & 1.336(6) \\ C(22) & 0.449(1) & 0.1545(2) & -0.3455(6) & 0.034(3) & S(9) - C(12) & 1.737(4) & C(15) - C(18) & 1.352(6) \\ S(10) - C(14) & 1.732(4) & C(17) - C(18) & 1.352(6) \\ S(10) - C(14) & 1.732(4) & C(17) - C(18) & 1.352(6) \\ S(10) - C(14) & 1.732(4) & C(17) - C(16) & 1.741(4) \\ S(11) - C(16) & 1.741(4) & S(11) - C(16) & 1.71(4) & 111.73(2) & Br(2) - Ga(1) - Br(3) & 110.45(2) \\ Br(1) - Fa(1) & 2.336(1) & S(12) - C(17) & 1.725(8) & Fc(1) - C(1) & 1.216(3) & S(12) - C(16) & 1.734(7) \\ Br(1) - Fc(1) & 2.336(1) & S(12) - C(17) & 1.725(8) & Fc(1) - C(12) & 2.186(3) & S(12) - C(1) & 1.734(8) \\ Br(1) - Fc(1) & 2.336(1) & S(12) - C(17) & 1.725(8) & Fc(1) - C(12) & 2.196(2) & S(13) - C(17) & 1.737(7) \\ Br(4) - Fc(1) & 2.336(1) & S(13) - C(18) & 1.771(7) & Fc(1) - C(14) & 2.205(2) & S(13) - C(17) & 1.734(7) \\ Br(4) - Fc(1) & 2.334(1) & S(14) - C(18) & 1.716(7) & S(1) - C(1) & 1.814(8) & S(14) - C(17) & 1.734(7) \\ S(1) - C(2) & 1.734(8) & S(14) - C(20) & 1.737(7) & Fc(1) - C(14) & 2.205(2) & S(13) - C(18) & 1.805(8) \\ S(1) - C(1) & 1.744(8) & S(14) - C(20) & 1.738(8) & S(1) - C(1) & 1.814(8) & S(14) - C(17) & 1.734(7) \\ S(2) - C(2) & 1.734(8) & S(14) - C(20) & 1.738(8) & S(1) - C(1) & 1.734(7) & S(16) - C(22) & 1.737(8) \\ S(2) - C(2) & 1.734(8) & S(16) - C(20) & 1.739(7) & S(2) - C(3) & 1.754(7) & S(16) - C(22) & 1.730(8) \\ S(4) - C(5) & 1.757(7) & O(1) - C(4) & 1.224(8) & S(4) - C(6) & 1.754(7) & S(16) - C(22) & 1.730(8) \\ S(4) - C(5) & 1.757(7) & O(1) - C(4) & 1.232(8) & S(6) - C(6) & 1.754(7) & S(16) - C(22) & 1.730(8) \\ S(4) - C(5) & 1.757(7) & O(1) - C(4) & 1.232(8) & S(6) - C(6) & 1.754(7) & S(16) - C(22) & 1.730(8) \\ S(4) - C(5) & 1.757(7) & O(1) - C(4) & 1.232(8) & S(6) - C(6) & 1.754(7) & S(16) - $	C(19)	0.708(1)	0.2433(2)	-0.2871(6)	0.026(2)	S(7) = C(10)	1.741(4) 1.746(4)	C(10) = C(11)	1.320(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	0.654(1)	0.2092(2)	-0.3002(6)	0.027(2)	S(8) = C(9)	1.740(4)	C(12) = C(15)	1.327(0)
$\begin{array}{cccccc} C(22) & 0.439(1) & 0.1543(2) & -0.3455(6) & 0.054(3) \\ \hline & 0.054(3) \\ \hline & 0.057(12) & 1.714(7) & C(17)-C(18) & 1.352(6) \\ \hline & S(1)-C(13) & 1.7314(4) & C(17)-C(18) & 1.352(6) \\ \hline & S(1)-C(14) & 1.7314(4) & C(17)-C(18) & 1.352(6) \\ \hline & S(1)-C(16) & 1.741(4) & S(17)-C(16) & 1.741(4) \\ \hline & S(11)-C(17) & 1.728(4) & \\ \hline & S(11)-C(16) & 1.741(4) & \\ \hline & S(11)-C(17) & 1.728(4) & \\ \hline & S(11)-C(12) & 2.1864(3) & \\ \hline & S(12)-C(16) & 1.741(8) & \\ \hline & S(12)-C(15) & 1.751(8) & \\ \hline & F(1)-C(12) & 2.1864(3) & \\ \hline & S(12)-C(16) & 1.744(8) & \\ \hline & S(12)-C(1) & 1.744(8) & \\ \hline & S(12)-C(2) & 1.744(7) & \\ \hline & S(12)-C(2) & 1.744(8) & \\ \hline & S(12)-C(2) & 1.744(8) & \\ \hline & S(12)-C(2) & 1.744(7) & \\ \hline & S(12)-C(2) & 1.754(7) & \\ \hline & S(12)-C(13) & 1.754(8) & \\ \hline & S(12)-C(12) & 1.754(8) & \\ \hline & S(12)-C($	C(21)	0.644(1)	0.1442(2)	-0.3192(6)	0.34(3)	S(0) = C(11) S(0) = C(12)	1.730(4) 1.727(4)	C(14) = C(15) C(15) = C(16)	1.366(0)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(22)	0.449(1)	0.1545(2)	-0.3455(6)	0.034(3)	S(9) = C(12) S(9) = C(14)	1.727(4) 1.718(4)	C(13) = C(10) C(17) = C(18)	1.430(3)
$ \begin{array}{c} \mathbf{F}_{3}(1) \in \mathbb{C}(1) \\ \mathbf{F}_{3}(1) = \mathbb{C}(1) $						S(9) = C(14) S(10) = C(13)	1.718(4) 1.733(4)	C(17) = C(18) C(19) = C(20)	1.362(0)
$ \begin{array}{c} TABLE 3 \\ Scletced Interatomic Distance for (Å) and Angles (deg) \\ \hline TASIG(1)=C(16) & 1.734(4) \\ S(11)=C(17) & 1.7328(4) \\ \hline S(11)=C(16) & 1.731(4) \\ S(11)=C(16) & 1.731(4) \\ S(11)=C(16) & 1.7328(4) \\ \hline S(11)=C(16) & 1.731(6) \\ S(11)=C(16) & 1.7328(4) \\ \hline S(11)=C(16) & 1.731(6) \\ S(11)=C(16) & 1.731(7) \\ S(11)=C(20) & 1.731(8) \\ S(21)=C(2) & 1.731(8) \\ S(21)=C(2) & 1.731(8) \\ S(11)=C(20) & 1.731(7) \\ S(11)=C(20) & 1.731(7) \\ S(12)=C(20) & 1.731(7) \\ S(21)=C(20) & 1.731(7) \\ S(3)=C(3) & 1.734(7) \\ S(11)=C(3) & 1.754(7) \\ S(11)=C(20) & 1.731(7) \\ S(3)=C(4) & 1.731(8) \\ S(4)=C(4) & 1.731(8) \\ S$						S(10) = C(14)	1.732(4)	C(21) - C(22)	1.550(5) 1.504(7)
$ \begin{array}{c} \mbox{TABLE 3} \\ \hline \mbox{S(11-C(17)} & 1.728(4) \\ \hline \mbox{S(11-C(11)} & 2.324(1) & S(12)-C(15) & 1.751(8) \\ \hline \mbox{S(12-C(11)} & 1.725(8) \\ \hline \mbox{S(11-C(11)} & 1.730(2) \\ \hline \mbox{S(11-C(11)} & 1.731(6) \\ \hline \mbox{S(11-C(11)} & 1.731(6) \\ \hline \mbox{S(11-C(11)} & 1.731(6) \\ \hline \mbox{S(11-C(12)} & 1.734(8) \\ \hline \mbox{S(11-C(11)} & 1.731(7) \\ \hline \mbox{S(12-C(21)} & 1.738(8) \\ \hline \mbox{S(11-C(13)} & 1.736(8) \\ \hline \mbox{S(11-C(11)} & 1.732(7) \\ \hline \mbox{S(11-C(12)} & 1.734(8) \\ \hline \mbox{S(11-C(11)} & 1.731(7) \\ \hline \mbox{S(12-C(21)} & 1.738(8) \\ \hline \mbox{S(11-C(12)} & 1.734(8) \\ \hline \mbox{S(11-C(22)} & 1.738(8) \\ \hline \mbox{S(11-C(2)} & 1.734(8) \\$						S(10) = C(16)	1.732(4) 1.741(4)	C(21) $C(22)$	1.50+(7)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						S(11) - C(17)	1.728(4)		
TABLE 3 Br(1)-Ga(1)-Br(3) 105.24(2) Br(2)-Ga(1)-Br(4) 109.06(2) Selected Interatomic Distance for (Å) and Angles (deg) Br(1)-Fe(1) 111.77(3) (1) For 1_2 - FeBr ₄ Br(1)-Fa(1) 2.336(1) S(12)-C(15) 1.754(8) Br(1)-C(1) 2.205(2) S(12)-C(15) 1.744(8) Br(1)-Fa(1) 2.336(1) S(12)-C(15) 1.744(8) Br(1)-C1(1) 2.205(2) S(12)-C(16) 1.744(8) Br(1)-C1(1) 2.186(3) S(12)-C(16) 1.744(8) S(1)-C(1) 1.814(8) S(14)-C(19) 1.747(8) S(1)-C(2) 1.814(8) S(14)-C(19) 1.747(8) S(1)-C(1) 1.814(8) S(14)-C(17) 1.730(8) S(2)-C(2) 1.814(8) S(14)-C(17) 1.730(8) S						Br(1)–Ga(1)–Br(2)	108.45(3)	Br(2)–Ga(1)–Br(3)	110.45(2)
		T	ABLE 3	0		Br(1)-Ga(1)-Br(3)	105.24(2)	Br(2)-Ga(1)-Br(4)	109.06(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Selected Inte	eratomic Dis	tance for (A	Å) and Angle	es (deg)	Br(1)- $Ga(1)$ - $Br(4)$	111.78(2)	Br(3)–Ga(1)–Br(4)	111.77(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1) For $1_2 \cdot FeBr_4$					(3) For $1_2 \cdot FeCl_4$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Br(1)- $Fe(1)$	2.336(1)	S(12)-C	C(15)	1.751(8)	Fe(1)-Cl(1)	2.205(2)	S(12)-C(15)	1.744(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(2)-Fe(1)	2.347(1)	S(12)-C	C(17)	1.725(8)	Fe(1)-Cl(2)	2.186(3)	S(12)-C(16)	1.739(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(3)-Fe(1)	2.330(2)	S(13)–C	C(18)	1.725(8)	Fe(1)-Cl(3)	2.190(2)	S(13)-C(17)	1.737(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(4)– $Fe(1)$	2.324(1)	S(13)–C	C(19)	1.757(7)	Fe(1)– $Cl(4)$	2.206(2)	S(13)-C(18)	1.805(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)-C(1)	1.740(8)	S(14)–C	C(18)	1.716(7)	S(1)-C(1)	1.814(8)	S(14)-C(17)	1.732(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)–C(3)	1.744(8)	S(14)–C	C(20)	1.738(8)	S(1)–C(3)	1.736(8)	S(14)-C(19)	1.747(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(2)–C(2)	1.741(8)	S(15)–C	C(19)	1.761(8)	S(2)–C(2)	1.814(8)	S(15)-C(20)	1.728(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(2)–C(3)	1.731(7)	S(15)–C	C(21)	1.799(7)	S(2)–C(4)	1.741(7)	S(15)-C(21)	1.750(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(3) - C(4)	1.787(8)	S(16)–C	C(20)	1.739(7)	S(3)–C(3)	1.754(7)	S(16)-C(20)	1.711(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(3) - C(6)	1.744(7)	S(16)–C	C(22)	1.790(8)	S(3)–C(5)	1.754(7)	S(16)-C(22)	1.730(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(4)–C(5)	1.757(7)	O(1)-C	(4)	1.224(8)	S(4)–C(4)	1.768(7)	O(1)–C(7)	1.223(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(4)–C(6)	1.759(8)	O(2)–C	(16)	1.212(8)	S(4) - C(5)	1.752(7)	O(2)–C(18)	1.240(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5)-C(7)	1.755(8)	C(1)–C	(2)	1.328(9)	S(5)-C(6)	1.755(8)	C(1)-C(2)	1.52(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5)–C(8)	1.765(8)	C(3)–C	(5)	1.39(1)	S(5)-C(7)	1.793(9)	C(3) - C(4)	1.371(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(6) - C(7)	1.741(7)	C(4)–C	(5)	1.417(9)	S(6)-C(6)	1.761(8)	C(5)-C(6)	1.344(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(6)-C(9)	1.759(8)	C(6)–C	(/)	1.35(1)	S(6)-C(8)	1.748(8)	C(7) = C(8)	1.44(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(7) = C(8)	1.750(8)	C(8)-C	(9)	1.332(9)	S(7) - C(9)	1.743(8)	C(8) - C(9)	1.389(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(7) = C(10)	1.820(7)	C(10)-($\mathcal{L}(11)$	1.51(1)	S(7) = C(10)	1./43(8)	C(10) - C(11)	1.34(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(8) - C(9)	1.752(2)	C(12)-C	U(13)	1.321(9)	S(8) - C(9)	1./33(8)	C(12) = C(13)	1.50(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S(\delta) = C(11)$ S(0) = C(12)	1./98(8)	C(14) = 0	C(15)	1.38(1)	$S(\delta) = C(11)$ S(0) = C(12)	1./33(8)	C(14) = C(15) C(16) = C(17)	1.33(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(9) = C(12) S(0) = C(14)	1.745(7)	C(13) = C(17) = C(17	C(10)	1.452(9)	S(9) = C(12) S(0) = C(14)	1.804(8)	C(10) = C(17) C(18) = C(10)	1.300(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(3) = C(14) S(10) = C(12)	1.740(8)	C(1) = C(10)	C(10)	1.39(1)	S(9) = C(14) S(10) = C(12)	1.702(8)	C(10) - C(19) C(10) - C(20)	1.429(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(10) = C(13) S(10) = C(14)	1.724(8)	C(19)-C	C(20)	1.55(9)	S(10) = C(15) S(10) = C(15)	1.700(8)	C(19) = C(20) C(21) = C(22)	1.30(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(10) = C(14) S(11) = C(16)	1.700(7)	C(21)-C	(22)	1.30(1)	S(10) = C(13) S(11) = C(14)	1.747(8)	U(21) = U(22)	1.55(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S(11)-C(10) S(11)-C(17)	1.731(7)				S(11)-C(14) S(11)-C(16)	1.729(7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(1) - Fe(1) - Br(2)	105.44(5)	Br(2)-F	Fe(1)-Br(3)	110.00(6)	Cl(1) - Fe(1) - Cl(2)	111.87(9)	Cl(2) - Fe(1) - Cl(3)	108.71(10)
Br(1)-Fe(1)-Br(4) 111.67(6) $Br(3)-Fe(1)-Br(4)$ 108.85(5) $Cl(1)-Fe(1)-Cl(4)$ 105.03(10) $Cl(3)-Fe(1)-Cl(4)$ 110.33(9)	Br(1)-Fe(1)-Br(3)	108.19(5)	Br(2)-F	Fe(1) - Br(4)	112.57(6)	Cl(1) - Fe(1) - Cl(3)	108.46(10)	Cl(2) - Fe(1) - Cl(4)	112.3(1)
(, , , , , , , , , , , , , , , , , , ,	Br(1)-Fe(1)-Br(4)	111.67(6)	Br(3)–F	Fe(1)–Br(4)	108.85(5)	Cl(1)-Fe(1)-Cl(4)	105.03(10)	Cl(3) - Fe(1) - Cl(4)	110.33(9)

FIG. 1. The packing structure of the plate crystal of $1_2 \cdot \text{FeBr}_4$: the projections down to (a) bc and (b) ab planes.

four Fe-Br and Ga-Br bond distances are almost the same (2.32-2.35 and 2.32-2.33 Å). Each FeBr₄ and GaBr₄ ions intervene between the 1-stacked columns and are aligned along the *c*-axis with changing the direction of the geometry by 180° alternately in a zigzag manner. Such $FeBr_4^-$ and $GaBr_4^-$ ion arrays have alternation of two different Br-Br contacts with the distances of 3.70 and 3.87 Å for the FeBr₄⁻ ion case, and of 3.67 and 3.87 Å for the $GaBr_4^-$ ion case which are both shorter than the sum (3.90 Å) of van der Waals' radii of the two Br atoms (18). The comparatively short Br-Br contacts with the distance of 3.81 Å for both the $FeBr_4^-$ and $GaBr_4^-$ ion cases are also seen between the neighboring arrays. In addition, there are several short contacts between the 1-stacked column and the $FeBr_4^-$ or $GaBr_4^-$ ion, as seen between the S atoms of ethylenedithio or 1,3-dithiole groups and the Br atoms of FeBr₄⁻ or GaBr₄⁻ ion with shorter distances of 3.66, 3.78, 3.79 and 3.52 Å for the FeBr₄⁻ ion case, and 3.70, 3.79, 3.83, and 3.54 Å for the GaBr₄⁻ ion case than the sum (3.80 Å) of van der Waals' radii of S and Br atoms (see Fig. 1a) (18).

The crystal structure of $1_2 \cdot \text{FeCl}_4$ is apparently similar to that of $1_2 \cdot \text{FeCl}_4$, as can be seen from the projections down to *bc* and *ab* planes in Figs. 3a and 3b. However, the significant difference can be seen on the stacking of 1 molecules as well as on the contact between the neighboring counteranions. Thus, the interplanar distances in the intra- and inter-dimers in $1_2 \cdot \text{FeCl}_4$ are 3.45 and 3.89 Å, respectively, which are much different from the corresponding values (3.41 and 3.47 Å) in $1_2 \cdot \text{FeBr}_4$, although the overlapping modes between the 1 molecules in the intra- and inter-dimers are very similar to each other between the FeCl_4^- and FeBr_4^- salts. From the much

FIG. 2. The contacts of two neighboring 1 molecules (A and B) in the plate crystal of $1_2 \cdot \text{FeBr}_4$: (a) A/B and (b) B/A' contacts.

increased difference in the distances between the intra- and inter-dimers in $1_2 \cdot \text{FeCl}_4$ compared with that in $1_2 \cdot \text{FeBr}_4$, the 1 molecules are much more preferentially dimerized in the stacking of $1_2 \cdot \text{FeCl}_4$ than of $1_2 \cdot \text{FeBr}_4$. Accompanied by the changed stacking of 1 molecules in $1_2 \cdot \text{FeCl}_4$, the $FeCl_4^-$ ions also adopt a different location in the crystal space from the FeBr_4^- ions in $1_2 \cdot \text{FeBr}_4$. In addition, since the Fe-Cl bond distance (2.20 Å) is shorter than that (2.33 Å) of the Fe-Br bond, the shortest Cl-Cl contacts between the neighboring FeCl₄⁻ ions have fairly different distances from the corresponding Br-Br contacts. Thus, one Cl-Cl contact in a zigzag chain of FeCl₄⁻ ions along the stacking direction has a very close distance (3.68 A) to the sum (3.67 A) of van der Waals' radii of two Cl atoms (18). While, in the other Cl–Cl contact the distance (4.39 A) is fairly long compared with the corresponding van der Waals' radii contact distance. There is also a long Cl-Cl contact (the distance: 3.91 Å) between the neighboring $FeCl_4^-$ ions in the direction perpendicular to the stacking.

Electrical Conductivities

Since all the plate crystals of $1_2 \cdot \text{FeBr}_4$, $1_2 \cdot \text{GaBr}_4$ and $1_2 \cdot \text{FeCl}_4$ were very thin, four Au probes were only put on the wide plane for their electrical conductivity (σ) measurement. The σ values on the wide plane at room temperature were considerably high for $1_2 \cdot \text{FeBr}_4$ (15.5 S cm⁻¹) and $1_2 \cdot \text{GaBr}_4$ (10.5 S cm⁻¹), while not so high for $1_2 \cdot \text{FeCl}_4$ (0.8 S cm⁻¹). To determine the relationship between the crystal structure and the crystal shape

analysis using a four-circle X-ray diffractometer with graphite-monochromated Mo $K\alpha$ radiation was attempted. It was however unsuccessful because any plate crystal was too thin to get intense diffractions from the thin plane. Accordingly, for the present it is unknown that the wide plane measured is parallel or perpendicular to the stacking of 1 molecules. Nevertheless, it is most probable that it is the stacking plane in view of the facts that the σ values are considerably high for $1_2 \cdot \text{FeBr}_4$ and $1_2 \cdot \text{GaBr}_4$ with the comparatively uniform 1-stacked structure, while low for $1_2 \cdot \text{FeCl}_4$ with the preferentially 1-dimerized stacked structure. However, such a large difference in σ cannot be expected from the perpendicular plane to the stacking of 1 molecules, since the three crystals have almost the same interstacking structures. The temperature dependence of electrical resistivity (ρ , a reciprocal of σ) was investigated for the three crystals. As is obvious from the results shown in Fig. 4, in all the cases the ρ values continuously increased, as the temperature was gradually cooled down from 300 to 60–100 K, where a crack in the crystal suddenly occurred. The $\rho - T$ behavior in the temperature rage is due to a typical semiconductor. The activation energies are however very small for $1_2 \cdot \text{FeBr}_4$ (57 meV) and $1_2 \cdot \text{GaBr}_4$ (27 meV). In contrast, $1_2 \cdot \text{FeCl}_4$ has a large value of 120 meV, as supposed from the fairly low roomtemperature σ value compared with those of the FeBr₄⁻ and $GaBr_4^-$ salts. In addition, it should be noted that significant change cannot be recognized in the electrical conducting properties in the temperature range of 300-60 K between $\mathbf{1}_2 \cdot \text{FeBr}_4$ and $\mathbf{1}_2 \cdot \text{GaBr}_4$, suggesting that the d spins of FeBr₄⁻ ions exert no influence on the π conducting electrons in the 1-stacked column in this temperature range. As mentioned next, the magnetic result on the temperature dependence of χ_p in $\mathbf{1}_2 \cdot \text{FeBr}_4$ showed that the d spins of FeBr_4^- ions interact with each other, but there is no interaction between the d spins and the conducting π electrons in the temperature range of 300-60 K and also of 60-5 K.

Magnetic Properties

The temperature dependences of the product of χ_p with temperature ($\chi_p \cdot T$) for $\mathbf{1}_2 \cdot \text{FeBr}_4$ and $\mathbf{1}_2 \cdot \text{FeCl}_4$ in the temperature range of 5–300 K are shown in Fig. 5. The $\chi_p \cdot T$ values gradually decreased as the temperature was cooled down from 300 K, and such a trend continued till 5 K. This $\chi_p \cdot T - T$ behavior obviously shows preferential occurrence of antiferromagnetic interaction in the overall temperature range measured. The χ_p obtained can well be interpreted as the sum of a component obeying the Curie–Weiss law $C/(T - \theta)$, where C is the Curie constant and θ the Weiss temperature) and of an almost temperature-independent component (χ_{π}) in the low-temperature region of the $\chi_p - T$ curve obtained by strong antiferro-

FIG. 3. The packing structure of the plate crystal of $1_2 \cdot \text{FeCl}_4$: the projections down to (a) bc and (b) ab planes.

magnetically interacting spins in the semiconducting case. It is of course that the former component is due to the *d* spins of FeBr₄⁻ or FeCl₄⁻ ions and the latter component is related to the π conducting electrons in the 1-stacked column. The best fitting between experimental and theoretical data gave $C = 4.59 \text{ emu K mol}^{-1}$, $\theta = -5.0 \text{ K}$ and $\chi_{\pi} = 5.5 \times 10^{-4} \text{ emu mol}^{-1}$ for $\mathbf{1}_2 \cdot \text{FeBr}_4$, and $C = 4.57 \text{ emu K mol}^{-1}$, $\theta = -3.2 \text{ K}$ and $\chi_{\pi} = 3.6 \times 10^{-3} \text{ emu mol}^{-1}$ for $\mathbf{1}_2 \cdot \text{FeCl}_4$. The *C* obtained is almost the same as the value (4.60 emu K mol⁻¹) calculated as an Fe(III) spin entity with S = 5/2 and g = 2.050. The small value and negative sign in θ indicates very weak antiferromagnetic interaction between the Fe(III) *d* spins. The χ_{π} is close to the values observed in several organic semiconductors reported so far (10, 19–21). The different magnitude of interaction between the *d* spins of the FeBr₄⁻ and FeCl₄⁻ ions can be readily understood based on the different

alignment of the FeBr_4^- and FeCl_4^- ions in a zigzag array. Thus, the Br–Br contacts in the $FeBr_4^-$ ion array have two slightly different distances of 3.70 and 3.87 Å, which are both shorter than the sum (3.90 Å) of van der Waals' radii of two Br atoms. But, for the Cl-Cl contacts in the FeCl₄ion array the corresponding distances are 3.68 and 4.39 Å. The shorter one is comparable to the sum (3.67 \AA) of van der Waals' radii of two Cl atoms, but the other one is too longer than the sum. Since the spins are effectively delocalized on the whole of $FeBr_4^-$ and $FeCl_4^-$ ions, some amount of the spins can also reside on each of the four Br and Cl atoms. Considering this spin distribution in the $FeBr_4^-$ and $FeCl_4^-$ ions together with their different alignment as mentioned above, the d spin interaction in the $FeCl_4^-$ ion array will be smaller than that in the $FeBr_4^$ ion array. It is actually the case, as is obvious from the θ values observed. To detect the π conducting electrons

FIG. 4. The temperature dependence of electrical resistivity (ρ) for the plate crystal of (\bullet)**1**₂ · FeBr₄, (\bigcirc)**1**₂ · GABr₄ and (\triangle) **1**₂ · FeCl₄.

involved in $1_2 \cdot \text{FeBr}_4$ and $1_2 \cdot \text{FeCl}_4$ their ESR measurements were performed. The ESR spectrum of the microcrystals of $1_2 \cdot \text{FeBr}_4$ at room temperature showed one very weak signal (g = 2.0062 and $\Delta H_{pp} = 87 \text{ Oe}$) due to the π conducting electrons in the 1-stacked column together with one intensively strong and broad signal (g = 2.0437 and $\Delta H_{\rm pp} = 1130 \,\text{Oe}$) due to the π conducting electrons in the 1-stacked column together with one intensively strong and broad signal (g = 2.0437 and $\Delta H_{pp} = 1130 \text{ Oe}$) (12) due to the d spins of FeBr₄⁻ ions. The g and $\Delta H_{\rm pp}$ values of the π signal are close to those (g = 2.0062 and $\Delta H_{pp} = 115 \text{ Oe}$) obtained in $1_2 \cdot \text{GaBr}_4$ without any d spins. The intensity of π signals in $\mathbf{1}_2 \cdot \text{FeBr}_4$ and $\mathbf{1}_2 \cdot \text{GaBr}_4$ was almost not changed in the measurement at 77 K. The ESR spectrum of the microcrystals of $1_2 \cdot \text{FeCl}_4$ was also measured at room temperature in a similar manner, and the d signal $(g = 2.0887 \text{ and } \Delta H_{pp} = 713 \text{ Oe})$ (12) again appeared.

FIG. 5. The temperature dependence of $\chi_p \cdot T$ for the plate crystal of $(\bullet)\mathbf{1}_2 \cdot \text{FeBr}_4$ and $(\triangle) \mathbf{1}_2 \cdot \text{FeCl}_4$.

However, the π signal could not be detected definitely at room temperature and also at 77 K. Supposedly, the main cause is the spin singlet formation by preferential dimerization of 1 molecules, as seen in the stacking structure of $\mathbf{1}_2 \cdot \text{FeCl}_4$.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (B) (No. 1224209) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- 1. P. Day, Philos. Trans. R. Soc. London Ser. A 314, 145 (1985).
- M. Kurmoo, A. W. Graham, P. Day, S. J. Coles, M. B. Hursthouse, J. L. Caulfied, J. Singleton, F. L. Pratt, W. Hayes, L. Ducasse, and P. Guionneau, J. Am. Chem. Soc. 117, 12209 (1995).
- L. Martin, S. S. Turner, P. Day, F. E. Mabbs, and E. J. L. McInnes, Chem. Commun. 1367 (1997).
- E. Ojima, H. Fujiwara, K. Kato, H. Kobayashi, H. Tanaka, A. Kobayashi, M. Tokumoto, and P. Cassoux, J. Am. Chem. Soc. 121, 5581 (1999).
- H. Fujiwara, E. Fujiwara, Y. Nakazawa, B. Z. Narymbetov, K. Kato, H. Kobayashi, A. Kobayashi, M. Tokumoto, and P. Cassoux, J. Am. Chem. Soc. 123, 306 (2001).
- E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-Garcia, and V. Laukhin, *Nature* 408, 447 (2000).
- S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, *Nature* 410, 908 (2001).
- H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, J. Am. Chem. Soc. 118, 368 (1996).
- 9. M. Iwamatsu, T. Kominami, K. Ueda, T. Sugimoto, H. Fujita, and T. Adachi, *Chem. Lett.* 329 (1999).
- M. Iwamatsu, T. Kominami, K. Ueda, T. Sugimoto, T. Tada, K-i. Nishimura, T. Adachi, H. Fujita, F. Guo, S. Yokogawa, H. Yoshino, K. Murata, and M. Shiro, *J. Mater. Chem.* 11, 385 (2001).
- M. Iwamatsu, T. Kominami, K. Ueda, T. Sugimoto, T. Adachi, H. Fujita, H. Yoshino, Y. Mizuno, K. Murata, and M. Shiro, *Inorg. Chem.* 39, 3810 (2000).
- T. Kominami, T. Matsumoto, K. Ueda, T. Sugimoto, K. Murata, M. Shiro, and H. Fujita, J. Mater. Chem. 11, 2089 (2001).
- A. Altomare, M. C. Burlea, M. Gamalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, and G. Polidre, *J. Appl. Crystallogr.* 27, 435 (1994).
- A. Altomare, M. C. Burlea, M. Gamalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidre, and R. Spagna, *J. Appl. Crystallogr.* 32, 115 (1999).
- P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, D. De Gelder, R. Israel, and J. M. M. Smith, *in* "Technical Report of the Crystallography Laboratory," University of Nijmegen, The Netherlands, 1994.
- TeXsan, "Crystal Structure Analysis Package", Molecular Structure Corporation, Houston, TX, 1985&1992.
- E. König, "Landolt–Bornstein, Group II: Atomic and Molecular Physics, vol. 2, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds," Springer-Verlag, Berlin, 1966.

- 18. L. Pauling, *The Nature of the Chemical Bond*, 3rd edn. Cornell University Press, Ithaca, New York, 1960.
- H. Yamakado, T. Ida, A. Ugawa, K. Yakushi, K. Awaga, Y. Maruyama, K. Imaeda, and H. Inokuchi, *Synth. Met.* 62, 169 (1994).
- K. Ueda, M. Goto, M. Iwamatsu, T. Sugimoto, S. Endo, N. Toyota, K. Yamamoto, and H. Fujita, J. Mater. Chem. 8, 2195 (1998).
- 21. K. Ueda, Y. Kamata, M. Iwamatsu, T. Sugimoto, and H. Fujita, *J. Mater. Chem.* 9, 2979 (1999).